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We perform numerical studies on the curvature distribution of classically pseudointegrable and

chaotic quantum billiards.

This curvature distribution is Gaussian orthogonal ensemble-like for

both systems and corresponds to linear level repulsion. The billiards show nonuniversal behavior
at low curvatures. As an aside, avoided crossings of three levels are investigated for both systems.
Strong interaction between the levels E; and E;;2 is shown. Eigenvalues and eigenfunctions are
calculated very precisely by a grid method with an asymmetric sparse matrix.

PACS number(s): 05.45.+b, 03.65.5q

I. INTRODUCTION

Up to now investigations of pseudointegrable billiard
systems [1,2] and their intermediate position between in-
tegrable and chaotic systems were mainly concerned with
the statistical properties of their energy spectra [3-8] or
with periodic orbit theory [9-11]. But there is another
approach to quantum chaotic systems in terms of level
dynamics [12-16] in which the behavior of the energy
spectrum of a parameter dependent Hamiltonian is an-
alyzed (the “eigenvalue motion”). Keeping in mind the
phenomenon of level repulsion and avoided level cross-
ings (ACs), Gaspard et al. introduced the curvature dis-
tribution as a possibility to characterize quantum chaotic
systems [14]. As level repulsion is observed in pseudoin-
tegrable systems [1], too, in this paper numerical stud-
ies on the curvature distribution of pseudointegrable and
chaotic billiards are performed. Additionally the behav-
ior of eigenfunctions in the vicinity of avoided crossings
is investigated [23].

II. THEORETICAL BACKGROUND

In contrast to integrable Hamiltonian systems, for
which the classical motion in phase space takes place
on a torus (genus g = 1), the phase space trajectories
of pseudointegrable systems are confined to an invari-
ant manifold of more complicated topological features
(g > 1) [1,2]. Typical pseudointegrable billiards are the
polygonal billiards. For a billiard system of the shape
of n rectangular steps the invariant manifold has genus
g = n. [1,2,8] [see small geometries in Figs. 1(a)-1(c)].

To study the parametric properties of the spectra of
billiard systems, one can change the geometry, e.g., the
radius of the circular obstacle in the Sinai billiard. Al-
though the original studies about level dynamics apply
for Hamiltonian systems of the form H = Hy + 7V,
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quantum billiards, which cannot be represented in this
form, can be treated in the same way [17,18]. The sec-
ond derivative of the parameter dependent eigenvalues
of H with respect to the parameter 7 yields the level
curvature

K;(7) = E,—(T), (1)

where E; belongs to a uniform energy spectrum {E;}. For
systems with Hamiltonian H = Ho + 7V, the curvature
distribution density P(K) can be introduced [14] as

d(limp (5.} 00 N{Ei(7) : Ki(7) < K}) 2
dK :

Here N denotes the number of elements in a set.
P(K)dK is the probability of finding K;(7) within the
interval [K, K + dK]. Level dynamics can be translated
into a classically integrable system with infinitely many
degrees of freedom. Applying methods of statistical me-
chanics to the resulting “eigenvalue gas” for high values
of |K| it can be derived that for Hamiltonians taken from
the Gaussian orthogonal, unitary, or symplectic ensemble
of random matrices (GOE,GUE,GSE) [19],

P(K) ~ |K|™7%, (3)

where v = 1,2, 4 for the GOE, GUE, and GSE [14,16].

The exponent v is related to the behavior of the spac-
ing distribution p(S) of the GOE, GUE, and GSE spectra
for S — 0, which is [20,21]

p(S) ~ 5. (4)

P(K) :=

For the Bunimovich stadium numerical studies have
shown close agreement with the prediction for the GOE
Hamiltonian P(|K|) ~ |K|~3 [22], which corresponds to
the observed universality of GOE fluctuations in the en-
ergy spectra of chaotic systems. Other quantum chaotic
systems have been considered in [15] and have proven to
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show the same universal behavior at high curvatures.
As it is known that for pseudointegrable billiards the
degree of level repulsion is v = 1, too, the same uni-
versal behavior for the tail of the curvature distribution
can be expected. However, solitonlike structures in the
parametric motion of the eigenlevels [see straight lines
in Fig. 2], which can be associated with scarred eigen-
functions, cause nonuniversal behavior of the curvature
distribution at low curvatures [15,22]. For this reason, it
is particularly interesting to see whether significant dif-
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ferences between the pseudointegrable systems and the
chaotic ones show up in the region of low curvature.

III. NUMERICAL RESULTS

We make use of a computational method for solving
partial differential equations, especially eigenvalue prob-
lems [23]. This method allows high-precision calculations
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FIG. 1. Histogram of the absolute value of the curvature distribution in logarithmic scale for the two-, four-, and seven-step
billiard (a)—(c) and the Sinai billiard (d). The slope —3 of the tail for the GOE is indicated by the broken line. (e)—(h) displays
the behavior for small curvatures for the same systems as in (a)—(d). The peak at K = 0 gets sharper going from the two-step
billiard (e) to the Sinai billiard (h). The abscissa values in (e)—(h) are to be multiplied by 103.
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of eigenvalues and eigenfunctions up to the 1000th state.
The Schrodinger equation is solved in a nonperturbative
way by a grid method with asymmetric sparse matrix.
A test has shown that 1000 precise eigenfrequencies of
microwave cavities [24] agree with calculated eigenvalues
for at least four digits.

A. Eigenvalue motion and curvature distribution

To investigate the curvature distribution for pseudoin-
tegrable and chaotic billiard systems, we perform numer-
ical studies with four billiard systems: The Sinai billiard
[see Fig. 1(d)] and three systems of the shape of two,
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four, and seven steps, respectively, which are intended
as polygonal approximations to the Sinai billiard [3].
The latter are classically nonergodic, whereas the first
is known to be a strongly chaotic system [25]. A quan-
tum billiard system—a free particle of mass m moving in
a two-dimensional compact domain D—is described by
the stationary Schrodinger equation

{=(R?/2m)A + V(2,9)} ¥n(z,y) = E Un(z,y) (5)

with vanishing potential inside D and V = oo elsewhere.

We choose approximately irrational ratios of the side
lengths of the billiards to avoid degeneracies in the pseu-
dointegrable case. For our investigations we calculate the
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FIG. 1. (Continued).
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lowest 350 — 400 eigenstates of all systems. These states
are the first 350 — 400 eigenstates of odd-odd parity of
the “whole” systems, which would be the billiard with a
circular or polygonal obstacle in the center of a rectan-
gle. Desymmetrization is necessary as parity is a good
quantum number and would lead to degeneracies in the
spectrum. However, the statistical theory of eigenvalues
applies to Hamiltonians without such symmetries.

A matrix of order 2700 is diagonalized for each bil-
liard shape for 120 geometry parameter values (i.e., the
radius of the circular obstacle or its rectangular approx-
imations). The eigenvalues are rescaled to a mean level
spacing of unity [20].

For the two-step and the Sinai billiard, the motion of
the 300th to 400th eigenvalue of these systems is dis-
played in Fig. 2. It is obvious that the two-step billiard
tends towards an integrable system and the correspond-
ing quantum phenomenon of level clustering [11]: In con-
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trast to the Sinai billiard large areas free of eigenvalues
can be seen in the plot of the eigenvalue motion, which
means, on the other hand, that more levels get close to
each other. This shows the non-neglectible Poissonian
part in the spacing distribution of the pseudointegrable
system [3].

We have calculated eigenfunctions along several of the
striking straight lines in Fig. 2. They often stem from
bouncing ball states [26] (see also Fig. 3). As an ex-
ample the eigenfunctions along the straight line from
eigenvalue 366 at radius 0.400 (notation: 0.400,366) to
0.519,340 have been calculated [Fig. 2(b)]. It turns out
that a bouncing ball structure moves from 0.400,366 to
0.470,353 and dissolves into irregular structures after the
following ACs. This can be interpreted as the occurrence
of strong mixing in this region. The scarred eigenfunc-
tion then appears again at about 0.491,346 and moves
down to 0.519,340.
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FIG. 2. Motion of the 300th to 400th rescaled eigenvalue of the two-step billiard (a) and the Sinai billiard (b). The geometry
parameters 7 are the side length of the rectangular obstacle in (a) and the radius of the circular obstacle in (b). The boxes are
drawn around the triple ACs displayed below. The corresponding eigenfunctions are shown in Fig. 3.
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FIG. 3. Plot of the eigenfunctions 343-345 of the two-step billiard at parameter value 0.430 and 0.432 (upper) and the Sinai
billiard at parameter value 0.499 and 0.503 (lower), i.e., before and after a triple AC (see the lower part of Fig. 2).



5440

F. SIMMEL AND M. ECKERT S1

TABLE I. Contributions to the curvature distribution in different ranges of curvature (in %) for

the different billiard shapes.

Curvature] 0-1] 1-10] 10-—10*)] 10*-10°] 10°-10*] 10*-10°] > 10°
two-step 0.02 0.21 2.10 19.81 56.21 19.98 1.68
four-step 0.04 0.34 3.48 28.93 51.06 15.56 0.59
seven-step 0.03 0.34 3.43 29.97 48.83 16.08 1.08
Sinai 0.05 0.38 4.27 32.29 48.50 14.23 0.27

To obtain the curvature distribution we improve our
data via interpolation, so that the histograms (Fig. 1)
are based on 2.5 - 10° curvature values each. In order
to get precise values for the second derivatives of the
eigenvalues a B-spline approximation of the E;(7) is per-
formed. The tails of the histograms for the four systems
show the behavior predicted for GOE systems (see Fig.
1). It can be seen that for the pseudointegrable systems
more high curvatures occur. This may be due to the fact
that levels can get very close before repelling each other.

For a more quantitative investigation of the prediction
of Eq. (3) a least squares fit of the tails (in logarithmic
scale) is performed. The slopes are calculated for differ-
ent |K| intervals. The results approach values around
—3 before getting senseless in the region of very high
curvatures. The mean value is —2.91 + 0.10 for the two-
step, —2.98 + 0.12 for the four-step, —2.78 £ 0.11 for the
seven-step billiard, and —3.07+0.24 for the Sinai billiard.
This corresponds to linear level repulsion for all sys-
tems. Among the different proposals such as how to in-
terpolate between the spacing distributions of integrable
systems (Poisson-like) and chaotic systems (Wigner-like)
[6,27-29], our result agrees with the one which predicts
linear repulsion [6,27].

However, there is a difference between the pseudoin-
tegrable and the chaotic systems at small curvature
[Fig. 1(e)-1(h)]. The distinct peak around K = 0 gets
monotonically sharper going from the two-step billiard to
the Sinai billiard. Table I shows the same result: There
are more small curvatures for the Sinai system and more
large curvatures for the two-step system. In [3] such a
monotonical transition has been observed for the spac-
ing distribution and the spectral rigidity (Dyson-Mehta
statistics).

The nonuniversal behavior in the vicinity of K = 0 has
been reported in [23] for the stadium and in [15] for the
hydrogen atom in a magnetic field. This behavior has
been explained with the occurrence of strongly scarred
states, which can be related to the straight lines in the
parametric spectrum (see above). They give a large con-
tribution at zero curvature.

One would expect that the larger number of bouncing-
ball states in the pseudointegrable systems, especially in
the two-step billiard, would cause a lot of low curvatures.
But the opposite is true: The classically chaotic Sinai
billiard has the strongest peak at K = 0. This result
demands further theoretical investigation.

B. Triple level crossing

As a by-product of our calculations, eigenfunctions at
a triple avoided crossing have been investigated. In Fig. 2
many ACs are displayed. Among the many ACs of two

levels, some with three levels occur. The eigenfunctions
343,344,345 of both the two-step billiard and the Sinai
billiard in the vicinity of such a triple AC are shown in
Fig. 3. This is an example of the strong interaction of
levels belonging to E; and E; .

The regular shapes of the eigenfunction 344 for the
two-step billiard remind one of the checkerboard struc-
tures of eigenfunctions of a simple rectangular box. Ob-
viously the structures of the upper and the lower levels
exchange, whereas the middle one keeps its shape—which
is verified by subtraction of the eigenfunctions. At the
parameter value where the levels are closest, strong mix-
ing occurs. No clear structures can be seen, except for
a very small parameter region for the two-step billiard,
where the bouncing ball can be found in the middle level.
However, the mixing is confined to a rather small region:
For the two-step billiard it is sufficient to change the side
length of the obstacle from 0.4307 to 0.4315 to see the
transition of the bouncing-ball state, and for the Sinai bil-
liard we have to change the radius of the circular obstacle
from 0.5000 to 0.5010, which corresponds to a square side
length of 0.4331 and 0.4440, respectively (see the shaded
area in the lower part of Fig. 2).

IV. CONCLUSION

In this paper, we have calculated the curvature distri-
bution for pseudointegrable and chaotic billiard systems.
The tails of all distributions show the behavior predicted
for GOE systems. This agrees with the results for the
spacing distribution in such systems, and thus shows the
consistency of the theoretical background. However, the
occurrence of GOE fluctuations in the spectra of pseu-
dointegrable systems is not yet understood. Extended
calculations for the curvature distribution in the semi-
classical regime may be necessary. Significant differences
for the systems show up at low curvatures. The curva-
ture distribution shows a prominent peak at zero curva-
ture, which is smaller for the pseudointegrable systems.
A discussion of the % dependence of the curvature distri-
bution to elucidate the role of bouncing-ball states would
be desirable, but was not aimed at in our work. As an
aside we have selected triple AC structures in the spectra
and investigated the behavior of the eigenfunctions in the
vicinity of such avoided crossings.
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